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A Simplified Representation for the Thermal 
Conductivity of Fluids in the Critical Region I 

G. A. Olehowy 2 and J. V. Sengers 2'3 

A practical representation for the critical thermal conductivity enhancement is 
developed by incorporating a finite cutoff into the asymptotic mode-coupling 
integrals for the diffusivity associated with the critical fluctuations. This proce- 
dure yields a simplified approximation to a more complete nonasymptotic 
solution of the mode-coupling integrals obtained by us earlier. A comparison is 
made with thermal conductivity data for carbon dioxide, ethane, and methane. 
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1. I N T R O D U C T I O N  

The thermal conductivity of fluids diverges at the critical point [1]. In a 
recent publication we have presented a solution of the mode-coupling 
equations for the dynamics of critical fluctuations that describes the cross- 
over from the singular behavior of the thermal conductivity of fluids near 
the critical point to the regular behavior of the thermal conductivity far 
away from the critical point [2]. However, the explicit form thus obtained 
for the crossover function for the thermal conductivity is rather com- 
plicated. It is the purpose of this paper to consider a simplified crossover 
function which, although less accurate than our more complete solution, 
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will be adequate for practical applications. This simplified crossover func- 
tion is obtained from a more approximate evaluation of the mode-coupling 
integrals in which the weak divergent behavior of the viscosity is neglected. 

2. SIMPLIFIED E V A L U A T I O N  OF THE M O D E - C O U P L I N G  
INTEGRAL FOR THE CRITICAL D I F F U S I V I T Y  

To describe the enhancement of the transort properties in the critical 
region the thermal conductivity 2 = A2 + ~ and the viscosity r/=- Ar/+ 0 are 
separated into normal or background contributions 2, 0 and singular 
critical contributions A2, Ar/ [1, 3]. The mode-coupling theory of critical 
dynamics yields two coupled integral equations for the singular contribu- 
tions to the thermal diffusivity D T = )L/pep  and the viscosity r/ [4]:  

A,~(q) 
ADT(q) = 

pcp(q) 

(2r03p / Cp(q) JkZr/(k)/p+14_f:lZD,r(14_[cl) 
Ar/(q) = ~ 2  k .  T qD (-~)3 f dk cp(k)%(lq-Fcl) 

[ 1 1 ] 2 k2sin2Osin2~b (2) 

x c~(k) Cp(Iq-/~l) k2DT(k)+14--~I2DT(14--f~I) 

where p is the density, Cp the isobaric specific heat, kB Boltzmann's con- 
stant, T the temperature, and q the wave vector of the fluctuations, while 
0 and ~b are the polar and azimuthal angles of/~ with respect to ~. The 
integrals are to be evaluated over all k up to maximum cutoff wave number 
qD = ]~]D] which is indicative of the crossover length scale [5].  In general 
ADT, A2, and dr/depend on the wave number q, but here we consider only 
the contributions to the transport properties in the hydrodynamic limit 
q--. 0. 

From an asymptotic evaluation of Eq. (1) it follows that very close to 
the critical point AD T satisfies a Stokes-Einstein relation of the form 

A). RkB T 
AO-r - - -  (3) 

pCp 6~r/~ 

where ~ is the correlation length and where R = 1.01 _+ 0.04 is a universal 
amplitude [1 ]. However, the validity of the asymptotic behavior of Eq. (3) 
is restricted to a very small range of temperatures and densities near the 
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critical point. To represent the actual behavior of the transport properties 
we have proposed a crossover model [2]  based on a global nonasymptotic 
analysis of the mode-coupling integrals in Eqs. (1) and (2). This crossover 
model yields an adequate representation of the thermal conductivity of 
such fluids as carbon dioxide [2, 6], ethane [7, 8], and methane [7, 9] in 
the critical region. 

Our crossover model, although readily programmable, is a somewhat 
complicated function. Therefore, we consider here the possibility of 
developing a simplified approximation. To obtain a simpler representation 
we start from the observation that the critical enhancement of the viscosity 
is very weak and is observed only in a small range of temperatures and 
densities around the critical point [1, 10]. The critical viscosity enhance- 
ment is therefore often neglected in practical applications [11, 12]. In any 
case there exists a large range of temperatures and densities where the criti- 
cal thermal conductivity enhancement is significant but where the critical 
viscosity enhancement is entirely negligible. Under those conditions we 
may identify the viscosity q(k) in Eq. (1) with ~/(0)~-0 to obtain in the 
limit q ~ 0 

ADT _ __A2 kBT fqD dff2 [cp(k)~ k-2  sin2 0 (4) 
pep (2~z)3 0 [ e - ~ J  l + DT(k)/glp -1 

In the near-critical region DT/flp 1~ 1, since D T vanishes at the critical 
point in the limit k-~ 0. Away from the critical point the term DT/Op-1 in 
Eq. (4) is of order unity (and positive). Hence if we neglect the term 
DT/VIp 1 in the integrand everywhere, we overestimate the integral. 
However, since DT/Op -~ never becomes much larger than unity, we can 
compensate to some extent for the overestimation by integrating up to a 
lower effective cutoff wavenumber qD<qD" We thus consider as our 
simplified approximation 

k~ fc  k) 1 
A D  T - f d/~ k 2 sin 2 0 (5) 

pep (2~r)' # [_ep(0)/ 

We note that Eq. (5) is identical to the simple mode-coupling integral 
originally considered by Kawasaki [13] and by Ferrell [14] except that 
the integration is now limited by a finite upper cutoff qD. To evaluate 
Eq. (5), we note that the isobaric specific heat Cp is related to the isochoric 
specific heat cv by pcp(q)=pcv(q)+ Tp-2(OP/•T) 2 x(q), where P is the 
pressure and )~(q) a generalized susceptibility which, in the limit q ~ 0, 
reduces to p(Opfi?P)T [15]. If we neglect the wave-number dependence of 
cv(q), since cv is a weakly divergent quantity, and make use of the 
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Ornste in~ernike  approximation z(q)=z(O)/(1-t-q2~ 2) [15], we obtain 
the simplified crossover function 

with 

and 

A2 RkB T 
ADT - - -  ( 0 - - ~ o )  (6) 

pCp 67rfl~ 

C V ~=2V(Cp--Cv~arctg(gtD~)+~ Cp / (7) 

Oo = 1 - exp (C]D ~)_ ~ + (~D~pr (8) 

In Eq. (6) we have reintroduced the amplitude R so as to reproduce the 
asymptotic behavior as given by Eq. (3). The term ~o subtracts a small but 
finite contribution far away from the critical point that arises because the 
same modes lead to the presence of so-called long-time tail effects on 
the transport properties [2].  As in our previous work [2] we relate the 
correlation length ~ to the dimensionless susceptibility ~ = zPc/P~ through 

= ~o(A~/F) v/~ (9) 

with 

A:~ = 2(T, p ) -  ~(T~, p) T~/T (10) 

Here Po and Pc are the critical pressure and density, v = 0.63 and 7 = 1.2415 
are the critical exponents, and 40 and F are the amplitudes of the 
asymptotic power laws for ~ and 2 [15], while TR=2Tc  is a reference 
temperature far above the critical temperature Tc. 

As for our more complete crossover model [2],  this approximate 
crossover model depends on the equilibrium thermodynamic properties, 
the background transport properties f /and  2, and the one fluid-dependent 
parameter qD- The effective cutoff qD, as well as the original cutoff qD, is 
in principle a function of the density and temperature [5].  In practice we 
treat the cutoff parameter as a constant. 

3. COMPARISON WITH EXPERIMENTAL THERMAL 
CONDUCTIVITY DATA 

We have made a comparison of the simplified crossover model given 
by Eq. (6) with the experimental thermal conductivity for the same fluids, 
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Table I. Summary of Fluid-Dependent Information 
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Carbon dioxide Ethane Methane 

T c (K) 304.107 305.330 190.551 
Pc (kg .m  3) 467.69 206.58 162.66 
Pc (MPa) 7.3721 4.87178 4.5992 
F 0.0520 0.0563 0.0609 
~0 (nm) 0.15 0.19 0.18 
qD l (nm) 0.23 0.14 0.23 
~ 1  (nm) 0.40 0.29 0.38 

Thermodynamic 
properties See Refs. 16, 17 See Refs. 7, 18 See Refs. 19, 20 

r~ See Ref. 6 See Ref. 7 See Refs. 21, 22 
.~ See Ref. 6 See Ref. 7 See Ref. 9 

carbon dioxide, ethane, and methane, to which we have previously applied 
the more complete crossover model described in Ref. 2. In this comparison 
we have continued to use the same information for the thermodynamic 
properties, the correlation length r and the background transport proper- 
ties 7. and F/ [-7]. This information is summarized in Table I. The thermo- 
dynamic properties were calculated from a scaled equation in the near- 
critical region [-7, 16, 19] and from a global fundamental equation outside 
the critical region [17, 18, 20]. The background transport properties are 
written as ~ = q0 + ~/exo and ,[ = 20 + 2 . . . .  where q0 and 20 are the viscosity 
and thermal conductivity in the limit p ~ 0  and qexc and 2exo are the 

Table II. Coefficients in Eq. (11) for qox~ and 2exo a 

Carbon dioxide Ethane Methane 

r h 5.5934 • 10 -3 0 See Table III for 
r/2 6.1757 • 10 -5 6.8989 • 10 -4 r/exc of methane 
r/3 0 -7.3999 • 10 -6 
r/4 2.6430 • 10 -11 5.0970 x 10 -8 
r/5 0 1.5825 x 10 lo 
q6 0 t.8406 X 10 -a3 

)~1 2.4472 x 10 2 5.2298 x 10 -3, 9.5973 x 10 2 
"~2 8.7056 x 10 5 3.1763 x 10 4 3.5177 • 10 -4 
23 --6.5480 X 10 -8 0 0 
24 6.5949 X 10 -11 0 1.8649 • 10 -9 
25 0 1.4888• 10 12 0 

ap in k g . m  3, r/~x r in pPa .s, and )~ox~ in mW .m 1 . K - I .  
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Table III. Coefficients in Eq. (12) for qexc ~ 

Methane 

i bl ri ti 

1 22.4160 1 2 
2 - 18.7621 1 3 
3 65.6498 2 1 
4 --172.353 2 2 
5 112.311 2 3 
6 -25.0068 3 1 
7 100.610 3 2 
8 -73.8272 3 3 
9 - 16.1095 4 2 

10 13.1929 4 3 
11 1.22661 5 1 

a p0 = 163.5 kg -m -3, T O = 190.77 K, r/exc in/zPa, s. 

dens i ty -dependent  excess viscosity and excess thermal  conduct iv i ty  [3] .  In  
pract ice we represent  ~/ex~ and 2ex~ by a po lynomia l  in p 

noxc = Z , ip i, Xoxc= Z r (11) 
i = 1  i = 1  

except  for qexc of  methane,  for which an existing Russ ian  equa t ion  [22 ]  of  
the form 

r/exc= ~, b , ( p / p o )  ri (To~T)  'i (12) 
i = 1  

was found to be adequate .  The coefficients of Eqs. (11) a n d  (12) for the 
b a c k g r o u n d  t r a n s p o r t  p roper t ies  are  r ep roduced  in Tables  II  and  III.  

The  results of the compar i son  with thermal  conduc t iv i ty  da t a  for 
ca rbon  dioxide  [23] ,  e thane [24, 25] ,  and  me thane  [24, 26] are shown in 
Figs. 1-3. In  these figures, we have also included a compar i son  with our  
earlier,  more  accura te  crossover  mode l  [2] .  

F o r  the thermal  conduct iv i ty  da t a  of Michels  et al. [23 ]  for ca rbon  
dioxide  with t empera tu res  between 305 and  350 K, t h e a v e r a g e  roo t  mean  
square (rms)  devia t ion  of the da t a  from the simplified crossover  mode l  is 
a = 2.2 % with an effective cutoff  qi; 1 = 0.40 nm, versus o = 1.3 % with 
q~,l =0 .23  nm for the more  comple te  crossover  model.  F o r  the thermal  
conduct iv i ty  da t a  of Rode r  and  Nie to  de Cas t ro  [24, 25]  for e thane  at  the 
312 and  325 K isotherms,  the average rms devia t ion  from the simplified 
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Fig. 1. The thermal conductivity of carbon dioxide in the 
critical region. The data are those of Michels et al. [23]. The 
dashed curves represent the more complete crossover model, 
and the solid curves the simplified approximation. The scale 
corresponds to the 305.25 K isotherm. The other isotherms 
have been shifted downward by 5 m W .  m -  t.  K 1 for A2 and 
by 1 0 m W . m  - I - K  -I  for 2. 

crossover  mode l  is a = 3.5 % with an effective cutoff ~ D ~ =  0.29 rim, versus 
a =  1.5% with q ~  = 0 . 1 4  nm for the more  complete  crossover  model .  For 
the thermal conduct iv i ty  data of Roder [24,  26]  for methane  at tem- 
peratures between 210 and 280 K and densities up to twice the critical 
density, the corresponding numbers  are ~ = 0.73 % with an effective cutoff 
c]S ~ = 0.38 nm versus cr = 0.69 % with qS 1 = 0.23 nm for the more  complete  
crossover  model .  Thus the quality of  the representation in terms of  the 
simplified crossover  mode l  degrades s o m e w h a t  as compared to the more  
comple te  crossover  model ,  but not  excessively.  
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Fig. 2. The thermal conductivity of ethane in the critical 
region. The data are those of Roder and Nieto de Castro 
[24, 25]. The dashed curves represent the more complete 
crossover model, and the solid curves the simplified 
approximation. The scale corresponds to the 312 K isotherm. 
The other isotherms have been shifted downward by 
5mW.m- l .K  -1 for A)~and by 10mW.m I.K i for2. 

In the past, empirical crossover functions have been used to represent 
the thermal conductivi ty of fluids in the critical region [1, 11, 12]. The 
simplified formulat ion presented in this paper  is as simple as most  of the 
empirical functions, but  it has the advantage of having some theoretical 
basis and of  containing only one fluid-dependent parameter  (in addit ion to 
suitably accurate information about  the thermodynamic  properties and 
background  properties). 

Our  simplified crossover model  reproduces the Stokes-Einstein rela- 
tion given by Eq. (3) asymptotically close to the critical point but  with 
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Fig. 3. The thermal conductivity of methane in the critical 
region. The data are those of Roder [24, 26]. The dashed 
curves represent the more complete crossover model, and the 
solid curves the simplified approximation. The scale 
corresponds to the 197 K isotherm. The other isotherms have 
been shifted downward by 2.5 m W  .m -~ .K  -~ for A2 and by 
1 0 m W . m  - l . K  -~ for 2. 

replaced with fT. Hence, the simplified crossover model ceases to be valid at 
temperatures and densities so close to the critical point that the difference 
between the actual viscosity t/ and the background viscosity ~ becomes 
substantial. 
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